14 (COM-2) 2.8 N/O

2016

OPERATIONS RESEARCH AND COMPUTER IN BUSINESS

Paper: 2.8

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Write answers to the **two Groups** in **separate books**.

GROUP-A

(Operations Research)

N.B.: While **New Course** students will have to answer question no. **4.(b)**, **Old Course** students will have to answer question no. **4.(c)** in lieu of **4.(b)**. All other questions are **common** to the students of both the courses **New** & **Old**.

1. (a) State whether the following statement is true **or** false:

"Linear programming deals with problems involving a single objective."

Contd.

Choose the correct alternative: (b)

> The solution to a transportation problem with 4 sources and 5 destinations is a basic feasible solution if the number of positive allocations is:

> > 1

1

1

- (i) 10
- (ii) 9
- (iii) 20
- (iv) 8

Point out a basic difference between a (c) transportation problem and an assignment problem.

(d) Choose the correct alternative

In LPPs, constraints may represent

- (i) limitations
- (ii) requirements
- (iii) balance conditions
- (iv) all in (i), (ii) and (iii)

(e) What is a saddle point associated with game theory? 1

2. (a) Write a note on the origin and development of Operations Research.

(b) Explain with the help of an example the problem of infeasible solution associated with linear programming.

5

Or

Write a note on game theory.

- (c) Explain the assignment problem giving its mathematical formulation. 5
- 3. (a) Solve the following LPP by graphical method:

Maximize Z = 8x + 5ySubject to the constraints :

 $x \le 150$ $y \le 250$ $2x + y \le 500$ $x, y \ge 0$

6

(b) Solve the following LPP by simplex method:

Maximize
$$Z = 4x_1 + 3x_2$$

Subject to the constraints:

$$x_1 + x_2 \le 50$$

$$x_1 + 2x_2 \le 80$$

$$3x_1 + 2x_2 \le 140$$

$$x_1, x_2 \ge 0$$

Use two-phase simplex method to solve the following LPP:

$$Minimize Z = \frac{15}{2}x_1 - 3x_2$$

Subject to the constraints:

$$3x_1 - x_2 - x_3 \ge 3$$
$$x_1 - x_2 + x_3 \ge 2$$
$$x_1, x_2, x_3 \ge 0$$

4. (a) Find the initial basic feasible solution to the following transportation problem by Vogel's Approximation Method (Unit Cost-penalty Method):

	Surard.	r(oze ext	TO	nomotano	
S south	rpan, J	W_1	W_2	W_3	Supply
	F_1	2 3 6 7	7 01	4 1 1 1 1	5
From	F_2	3	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8
	F_3	5	4	7	7
	F_4	1	6	2	14
Demand		7	9	18	34
Demar	-	7	course wat	ALC: UNIV	The Control of the Co

8

Or

Solve the game whose pay-off matrix is:

(b) [For New Course]

A bank plans to open a single server drive-in banking facility at a particular centre. It is estimated that 28 customers will arrive each hour on an average. If, on an average, it requires 2 minutes to process a customer's transaction, determine:

- (i) the proportion of time the system will be idle.
- (ii) on the average, how long a customer will have to wait before reaching the server?
- (iii) the length of the driveway required to accommodate all the arrivals, on the average, if 20 feet of driveway is required for each car that is waiting for service. 2+2+3=7

(c) [For Old Course]

Explain the net present value method of investment analysis. 7

GROUP-B

(Computer in Business)

(For both New Course and Old Course)

Marks: 30

- 5. (a) Define an information system. 1 (b) What is encryption? 1 (c) Define the four DFD symbols. 2 (d) What do you mean by data flow diagrams? 1
- Explain the private and public key 6. (a) encryption techniques.

Or

Write about the basic characteristics present in all information systems.

- What is e-commerce? Write a brief note (b) on the benefits of e-commerce.
 - 2+3=5
- What is system development life cycle? 7. (a) Describe the classical waterfall model. 3+5=8

What is a decision tree? Explain the technique of preparing a decision tree with a suitable example. 3+5=8

(b) What do you mean by input design? Discuss the different ways of inserting source data into the system. 2+5=7